
Reliable Trajectory Classification Using Wi-Fi
Signal Strength in Indoor Scenarios

Martin Werner, Lorenz Schauer, Andreas Scharf
Mobile and Distributed Systems Group

Ludwig-Maximilians-University Munich, Munich
martin.werner@ifi.lmu.de, lorenz.schauer@ifi.lmu.de, scharfa@cip.ifi.lmu.de

Abstract—The time-series nature of human movement in-
side buildings can be exploited for common tasks of location-
based computing. With this paper, we propose to use Wi-Fi
signal strength measurements directly to infer the trajectory
in comparison with a database of trajectories removing the
need for accurate map information or fingerprint databases.
A trajectory consists of a time-series of sensor readings of all
Wi-Fi signals in reach measured by a mobile device. Starting
from these measurements, we discuss several possibilities of
denoising, filtering and classification of trajectories to improve
our approch. By using a variant of the Douglas-Peucker algorithm
we reduce the amount of computation without severe degradation
of classification performance. Furthermore, we increase platform
scalability by using a fast filter operation based on the Jaccard
index of presence of access points to prune irrelevant trajectories
early. With respect to our setting, the Fréchet-distance between
trajectories has proven to be a very good choice outperforming
dynamic time warping. Finally, we intorduce several data-driven
trajectory segmentation schemes in order to be able to match
partial trajectories early. The evaluation is based on the collection
of trajectories in specific situations including staircases, hallways
and movement inside a single room. With this approach, we are
able to reliably classify trajectories without an intermediate step
of calculating spatial position. This results in increased stability
with respect to local changes in the environment, as these changes
only affect a small part of a longer trajectory.

I. INTRODUCTION

In the last decade, wireless and mobile computing have
reached a level in which high-bandwidth Internet access has
become widely available. Moreover, modern smartphones are
equipped with a lot of sensors able to capture information
about the surroundings of a mobile user. Position determination
outside buildings is well-established using two technologies
available to the mobile user, namely GPS for position deter-
mination and Wi-Fi and cell id proximity estimation over cloud
services. However, inside buildings GPS is often unavailable
and the achievable accuracy of Wi-Fi and cell id positioning
as provided by major Internet companies does not suffice. To
close this gap, a lot of research has been done with respect to
indoor positioning using existing infrastructure such as Wi-Fi
or Bluetooth. In general, there are a lot of techniques that work,
but all these techniques have in common that they need a lot of
preparation to work involving the generation of detailed signal
maps and efforts to keep them up to date. From this research,
one can also learn that Wi-Fi signals are usually not used to
directly infer a position, rather a pattern matching approach
with a fingerprint database has to be employed.

Instead of relying on isolated location measurements, the
time series nature of human movement inside buildings can
be exploited for some very common tasks of location-based
computing. A proactive information service is usually not
interested in the current, actual and correct location of a mobile
user, but rather in information about the situation of the user
such as future location and activities. However, most of these
understand trajectories as a time series of spatial location and
generate it from a layered structure, where location inference
and trajectory-based computations are isolated.

These approaches suffer from the problem that signal
anomalies negatively affect location accuracy (e.g., the ex-
pected error or mean squared error) and, hence, sophisticated
tracking systems enforce linear movement and reduce jumping
position estimates. Hence, signal anomalies are suppressed and
hidden from higher layers of such layered architectures.

With this paper, we propose to use the signal measurements
directly to infer the trajectory in comparison with a database
of trajectories removing the need for accurate map information
and fingerprint databases and providing a readily deployable
system. We propose an indoor Wi-Fi-based trajectory mining
scheme in which a trajectory consists of a time series of sensor
readings of all Wi-Fi signals measured by a device. Starting
from this measurements, we discuss several possibilities to de-
noise, filter and classify trajectories with a thorough evaluation.
The main contributions of this paper are:

• An effective and efficient trajectory mining approach
based on sensor data directly and

• a thorough analysis of the choices made with a demon-
strative application.

The remainder of this paper is structured as follows. The
next Section II reviews related work. Afterwards, some tech-
nical background needed to provide trajectory-based services
is explained in Section III. Section IV describes our approach
and the involved steps. Section V explains the dataset, which
was recorded to evaluate the system and Section VI gives
evaluation results. Section VII concludes the paper and gives
hints on future work.

II. RELATED WORK

In recent years, a lot of research has been done trying
to predict the user’s next location. Some related work uses
trajectory computing approaches based on positioning data
provided by GPS [1]–[3]. However, these systems are only
applicable outside of buildings and can only be transformed to

c©2014 IEEE. Accepted for publication according to IEEE definitions. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

1

the indoor situation using a layered architecture together with
some positioning system. Further research is trying to predict
the next location according to the actual point in time. These
include estimating the location a user will visit within the next
ten minutes [4], or the next location checkin within a location-
based social network such as Foursquare [5]. Some systems
solve even simpler problems using less sensor information,
such as predicting the time when a person is at home or
not [6]. Another view towards predicition is given by finding
periodical patterns in location data [7]. It is also possible
to use calendar data and create user-specific decision trees,
while the prediction is finally based on the actual location,
date, time, duration of stay and holiday time [8]. Other
research investigate the probability that a user moves from
one location to another on various points in time [9]. A more
theoretic work ensures a bound of predictability measuring the
entropy of trajectories of mobile phone users and give 93%
potential predictability. A lot of work has also been done with
respect to chosing the right prediction framework including
dynamic Bayesian networks, multi-layer perceptrons, Elman
networks, Lempel-Ziv, and Markov predictors [10], [11]. In
some research, Order-2 Markov predictors have been proposed
and evaluated to perform well [12], [13].

III. TECHNICAL BACKGROUND

A. Trajectory Similarity Measures

The primary ingredient in a trajectory-centric classification
or clustering framework is a technique, which consistently
assigns a distance to pairs of different trajectories. The topo-
logical relations between trajectories can become arbitrarily
complex, they can be identical, they can intersect, they can be
far away from each other, they can have the same shape, etc.
For this paper, we describe some notions of distance, which
are well-suited for classification of trajectories. However, there
exist numerous other notions of trajectory distances, which
could not be incorporated in this paper. However, the following
distances are typical for several domains and have found wide
adoption.

1) Hausdorff-Distance: The Hausdorff distance is defined
for all subsets of a metric space. When applied to trajectories
or time series data it is usually taken with respect to all
points lying on the trajectories. The Hausdorff-metric is based
on another metric δ, which is used to calculate the distance
between points.

δHD(A,B) = max{ sup
a∈Im(A)

inf
b∈Im(B)

δ(a, b),

sup
b∈Im(B)

inf
a∈Im(A)

δ(a, b)}

In general, the suprema and infima are difficult to calculate.
However, for trajectories represented as polygonal lines, it is
actually possible to efficiently calculate the Hausdorff distance
by analyzing critical values. Note that the Hausdorff distance
is defined on the set of points of a trajectory only and does
not reflect the time-domain nature of the sequence. To account
for this sequential structure of a track, Fréchet defines another
metric which reflects some more of the structure of a trajectory
while still being based on an elementary distance between
points.

2) Fréchet Distance: The Fréchet distance is best described
informally: Imagine a dog and his owner moving on two
separate paths. They are not allowed to move backwards. The
Fréchet distance is the minimum length of a leash needed to
keep the dog and its owner connected. Formally, this can be
formulated as taking into account all possible reparametriza-
tions of the trajectories:

δF (A,B) = inf
α,β

sup
t∈[0,1]

δ(A(t), B(t)),

where α, β : [0, 1] → [0, 1] are continuous, non-decreasing,
surjective maps from the unit interval into itself called
reparametrizations. Again, for polygonal trajectories, efficient
algorithms exist, which can be used to calculate the Fréchet
distance in O((p2q + q2p) log pq) time for trajectories of p
and q vertices respectively [14]. Allowing some error bounded
by the longest segment in the trajectory representation, even a
running time of O(pq) can be achieved [15].

3) Jaccard Metric: A completely different approach is
given by the Jaccard Metric, which is not based on an
underlying metric δ. Instead, it is based on a cell subdivision of
the world in symbolic locations usually represented by labels.
Note that one place can have multiple labels, e.g., the visible
GSM cell identifiers at a specific location. Using these labels,
a trajectory can be naturally assigned the set of labels that are
contained in it. For two such sets A and B, the Jaccard index

J(A,B) =
|A| ∩ |B|
|A ∪B| ,

gives a measure of set similarity which takes values in [0, 1].
Based on this index, the Jaccard metric is obtained by setting

δJ(A,B) = 1− J(A,B)

There exist very elaborate techniques to quickly calculate the
Jaccard index between a set of sets (e.g., a dataset) and a single
instance based on sparse matrix multiplication.

4) Dynamic Time Warping: Dynamic time warping (DTW)
is a distance definition, which has found wide adoption in
the tracking domain. Basically, it compares two trajectories
point by point using an underlying metric δ. However, the
time between two trajectories is adopted by time warping.
Measurements can be used more than once, but all points
have to be considered. Formally, this results in the following
recursive definition:

δDTW (a1..n, b1..m) = δ(an, bm)+min





δDTW (a1..n−1, b1..m−1)
δDTW (a1..n−1, b1..m)

δDTW (a1..n, b1..m−1)

This distance can be computed in O(mn) time [16]. Unfor-
tunately, DTW does not provide a metric as it does not fulfill
the triangle inequality.

B. Trajectory Preprocessing

Preprocessing of collected raw data is often essential to
reduce the processing overhead in subsequent phases, to sim-
plify the classification and finally, to increase the classification
performance. For that purpose we have to select the useful
data out of the whole dataset in a first step. Furthermore, the

024

034

039

052

057

061

066 071

072

075

au172 b001

bib
du105

e007 e011

e012 entrance

eu111

f011

fu111
g004

g009

gu108

gu112
kalahari

mensa
sibirien

u104

u110

u122
u127

u133

u139

u151

u157

u166
u179

Fig. 1. Dataset represented as a graph of interconnected labels

preselected trajectories can be simplified and smoothed by the
following techniques:

1) Douglas Peucker Algorithm: The Douglas Peucker Al-
gorithm [17] serves for compression and smoothing of a
trajectory by approximating the original trajectory with less
intermediate points. As an initial step of Douglas Peucker, the
algorithm approximates the original trajectory by a simple line
between the start and endpoint. Then it splits the initial line
into two line segments by finding a suitable split point. Such a
split point is defined as the sample point of the original trajec-
tory which has the highest perpendicular Eucledian distance
to the approximate line segment and, hence, has the highest
contribution on the sum of the perpendicular distances of all
points in the trajectory. The algorithm continues recursively
with both segments until no more split point can be found
in the considered segment. This is the case when all sample
points of one segment have a perpendicular Eucledian distance
smaller than a predefined error threshold ε. Thus, the result of
Douglas Peucker is an accurately simplified trajectory where
all points are within ε range to the origin [18]. In computer
graphics, ε is often chosen in the order of one pixel. Hence,
the Douglas-Peucker simplified trajectory looks exactly like
the version of the trajectory drawn to a bitmap of pixels.

2) Fast Fourier Transformation Denoising: The fast
Fourier transformation (FFT) computes the discrete Fourier
transformation (DFT) and its inverse in an efficient way. The
DFT is an operation to transform functions to the frequency
domain. This technique is used in many fields, where the
frequency structure of a signal contains more useful informa-
tion than the original domain. In order to smooth and denoise
collected trajectories, the measured samples are converted into

the frequency domain for each dimension and the coefficients
of high frequencies are suppressed. The inverse FFT is then
used to transform the function back into its original domain
and the smoothed trajectories are shown as result.

C. Trajectory Classification

To classify measured time series we use a simple k-next-
neighbors (kNN) approach. This technique is a lazy learning
algorithm in which an incoming trajectory is compared to all
trajectories in the dataset. It takes as input the measured time
series and calculates the k next neighbors in the dataset based
on a certain distance function. The trajectories are assigned to
classes, typically the target points. With a voting approach, we
return the class, which contains most of the k next neighbors
of the query trajectory. Hence, the measured time series is put
into the class with the highest similarity. Depending on the
actual service, different conclusions can be drawn from the set
of the top k candidates: In proactive information applications,
the set of endpoints of these trajectories can be used as an
input. For inroute awareness, points of interests near to any
of the top k routes can be calculated and scored against a
personal profile of interest. In this way, it would even be
possible to propose taking a different way towards an estimated
goal, which contains more interesting points for the current
user. Similar approaches have been made with taxi data based
routing. Therefore, mobility traces of taxis were collected and
used to route users towards their respective targets. This can
also become interesting inside complex buildings, where it
might be difficult to find the most efficient way inbetween
two locations, especially, if no map information is available.

Database

Refine

Candidate
Set Result

Filter

Jaccard
Similarity kNN Voting

Fig. 2. High-level architecture of the proposed system

D. Trajectory Prediction

Due to the trajectory classification, the measured time
series belong to a certain class containing one or more paths.
The paths from this class can then be used to infer about
the situation of the user and provide candidates for future
movement. Such a dataset is represented in Figure 1 showing
several locations within a building and bidirectional paths
between them.

The correctness of the result can be statistically evaluated
by probability calculations. If one path was more frequented
in the past than others, the user will probably choose this path
again. The more frequented paths are illustrated by a higher
line width in Figure 1. Considering all possible locations, the
user’s most probable next destination can be determined based
on the user’s current path. Furthermore, using the conditional
probability, we can identify a potential destination DesC
assuming that the user is currently on the path from A to
B:

P (DesC |PathA→B) =
P (PathA→B |DesC) · P (DesC)

P (PathA→B)

In this expression, the right hand factors can easily be esti-
mated from relative fractions in the dataset. This expression
will then be evaluated using all destintations DesC . Therefore,
the denomitator is constant and can be left out and replaced
by a normalization afterwards.

IV. TRAJECTORY SIMILARITY FROM TIME SERIES

In order to find trajectories from the dataset, which are
similar to a requested time series, we propose the following
architecture, illustrated in Figure 2. The requested time series
is preprocessed and taken as input. The result of our system
is an amount of hits while each element is connected to a
distance value indicating the similarity between the requested
time series and a specific trajectory. The system’s process is
divided into three major steps:

• Preprocessing: The requested time series is prepro-
cessed in order to remove needless samples and thus,
to increase the performance in the following steps.

• Filtering: Based on the Jaccard Similarity, a large
fraction of the dataset can be pruned.

• Comparison: The query trajectory is then compared
to the candidate set using the k-NN approach. From

these top k hits, voting approaches can be used to infer
the most probable findings.

A. Preprocessing

In a fist step, redundant and needless information in the
requested time series is removed from the total amount in
order to improve the performance of subsequent processing
steps. For that purpose, the requested time series is analyzed
according to three features:

• Multi-SSID: For technical or organizational purpose, a
single access point can manage various networks with
different SSIDs and BSSIDs. Such multi-SSIDs can
be summarized to one logical SSID in the recorded
time series to minimize the amount of collected data.
Different BSSIDs from one single physical access
point can be identified due to the fact that multi-SSIDs
often use similar or continuous BSSIDs. Furthermore,
the received signal strengths from multi-SSIDs have
similar qualities and thus, they can be grouped to one
signal strength which reduces the amount of collected
data.

• Thresholding: During a trajectory, the received Wi-
Fi signal strengths strongly varies in terms of the
received power. If all received signal strengths from
one network in a complete time series are smaller than
a predefined threshold, this network can be removed
from the collected data. This reduces the amount of
comparisons needed for classification. However, even
a weak network can contain useful information for
classification, which will be lost by this step. Hence,
the threshold should be carefully chosen.

• Mirroring of tracks: Due to the fact that the direction
of travel in time series is dispensable, a track contains
the same information as its inverse. Hence, only one
track for both directions must be saved.

Once redundant information is removed from the requested
time series, we can simplify the remaining dataset by using
the Douglas-Peucker algorithm. The aim of this step is to
return trajectories, which are less complex than the original
ones, but without loosing important information, e.g. maxima
and minima. Hence, choosing the right value for the Douglas-
Peucker parameter ε is essential to meet this requirement.
If ε is too small, the complexity of requested time series is

not reduced to an optimal level and further processing steps
waste resources. On the other hand, a high value for ε leads
to information suppression and increases the error rate for
classification.

Besides simplification, the requested time series can also
be filtered from noise by using the FFT. Thus, trajectories are
smoothed and high frequency noise is removed. This technique
leads to information degradation of the requested time series
and consequently, it has to be investigated, whether FFT-based
denoising complicates classification.

B. Filtering

The purpose of this step is to reduce the amount of the
dataset to be considered in order to reduce computational
overhead and improve classification performance. Based on
the assumption that the requested time series contains signals
from the same access points as the correct trajectory from the
data set, we can ignore tracks showing a small similarity with
the requested time series in terms of existing access points.
For filtering, the Jaccard-index with respect to the sets of
fingerprints in each trajectory is being used. If q represents
the requested time series and Tm represents one track out of
the training dataset, we define the Jaccard-index J as

J(APsq,APsTm
) =
|APsq ∩APsTm

|
|APsq ∪APsTm

|
with APsx representing the amount of scanned access points
on trajectory x. Hence, J(APsq,APsTm) describes the simi-
larity as the rate between the amount of common access points
and the total amount of scanned access points in both tracks
q and Tm. Each track Tm can then be classified according
to its similarity to the requested time series q, based on the
Jaccard-index and a predefined threshold δ. Only tracks with
J(APsq,APsTm

) > δ are declared as similar to q and are put
into the candidate set for further processing. Thus, choosing
an optimal value for δ is essential for classification. If δ
is suboptimal, e.g. too small or too high, the result of the
classification process will degrade. Note that it is possible
to choose δ in a data-driven and adaptive way by defining
the relative fraction of the x% most similar tracks out of the
dataset.

One problem with respect of performance and computing
time is the arising overhead when calculating the intersection
of existing access points between q and each Tm. As the
information about existing access points in Tm is available
before calculating the intersection for the Jaccard-index, we
can reduce the complexity by computing a sparse matrix A.
Then, the Jaccard index can be calculated using a sparse
matrix-vector multiplication. Each column of A represents a
trajectory Tm of the dataset and each line represents a specific
access point APn. If an access point APn occurs in a track
Tm, the value at am,n is set to one. If not, then am,n is set to
zero.

A =



aT1,AP1

. . . aTm,AP1

...
. . .

...
aT1,APn . . . aTm,APn




with aTm,APn =

{
1 if APn ∈ Tm
0 otherwise

Path A

Path B

Fig. 3. Example showing two paths which share a segment.

For each requested time series q the size of the intersec-
tion of APsq and APsTm can efficiently be computed by a
sparse matrix-vector multiplication of A with the vector qAPn

representing all exiting access points in q.


|APsq ∩APsT1 |

...
|APsq ∩APsTm

|




′

=



qAP1

...
qAPn




′

×A

To obtain the Jaccard-index for each entry, all intersections
have to be divided by the total amount of scanned access points
which is easy to compute.

C. Elementary Trajectory Comparison

After filtering the dataset based on the Jaccard-index and
a predefined threshold δ, only a certain amount of trajectories
remains as candidates for comparison with the requested time
series. For each candidate, we compute the distance to the
requested time series. Thus, elementary trajectory comparison
is based on one of the distances introduced in Section III-A.
The Hausdorff-distance considers measured signal strengths
without their temporal relation. In comparison to Hausdorff,
the Fréchet distance was implemented for time series and
respects also the time domain of samples. DTW focusses on
the problem that various time series differ in their speed of
motion. Considering the distances from elementary trajectory
comparison, we classify the requested time series by k-NN
classification and return the k most similar tracks from the
candidate set.

One problem with this approach is that different tracks can
share large fractions of similar movement. Hence, when the
requested time series is compared to the training dataset, it is
customary to return a set of the top k trajectories. Additionally,
these top k trajectories can be scored using the inverse of the
distance of the trajectory candidate from the query trajectory.

D. Segmentation

For efficient comparison of trajectories of different length,
we use a segmentation approach. Segmentation divides mea-
sured time series in different parts based on certain segmen-
tation points. The aim of this step is to become able to
find similar pieces in both, the requested time series and the
dataset. Furthermore, a query with a short trajectory will then
match to extensions of itself once the first segments have been
completed. Figure 3 depicts a situation in which two paths
start with the same segment and split into two different paths
at the corner.

Fig. 4. Screenshots of data collection using the prototype

There are different strategies to find such segmentation
points in time series. We discuss the following strategies out
of which segmentation at local maxima performs best on our
datasets.

• First occurrence of AP: When a users enters the range
of an access point for the first time, signals from this
access point are first received. The beginning of signal
measurements from a new access point can be used
as a segmentation point.

• Last occurrence of AP: Similarly, we can define seg-
mentation points, when an access point disappears.

• Local maxima of AP inside trajectory: Another way
to define segmentation points is given by looking
for local maxima of signal strength readings. It is
reasonable to expect the user being at the nearest
distance to the given access point.

• High absolute variation: Certain events, such as floor
changes, passing doors or changing directions cause
significant modifications of collected time series.
Thus, segmentation can be performed, when received
signal strengths variation increases extremely between
two points in time.

• High relative variation: The absolute variation strat-
egy can be extended to cover relative variation by
dividing the absolute variation by the number of
visible access points.

• Thresholding: This strategy is based on a predefined
threshold. Segmentation points are placed whenever
the received signal strength of an access point exceeds
the predefined threshold for the first time.

V. DATA SET AND IMPLEMENTATION

In order to evaluate the choices involved in the proposed
system and in order to get an understanding of the performance
of the system, three steps have been taken. First of all, a
prototype based on the Android mobile operating system has
been developed. This prototype implements all major aspects
of the system including data collection as well as database
construction, labelling, and live predicition.

A. Prototype

The propotype consists of an Android application, which
can be used to collect the needed dataset. It was installed

0
1

2

u

(a) Stairs

m

u127

u139
u166

u179

(b) Hallway

066

075

u166

u179

(c) Floor

024

071

 end

l085

center

(d) Plus

a
b

c

d

(e) Square

Fig. 5. Characteristics of the generated Datasets

on several private Android devices and collected Wi-Fi signal
strength data by actively scanning for available access points
once a second. This data can be recorded and labels for the
starting point and the end point can be assigned. Figure 4
depicts three screens of this application, a graph containing
historical Wi-Fi data, a list of sensor events captured as well
as a list of access points.

B. Data Sets

For the evaluation of the proposed approach, we collected
six datasets inside our office building. The first dataset is given
by tracking the movement of a single person over some weeks
inside our building. The dataset is subsumed in Figure 1 and
contains a lot of different locations given by room names and
varying numbers of movements between these rooms. This
dataset has been used to evaluate the live prediction module
inside the app.

In order to understand the situations, in which our direct
approach is working well, we collected five additional tracks
for the movement patterns depcited in Figure 5. Table I
subsumes the contents of these datasets.

VI. EVALUATION AND RESULTS

This section evaluates the three key ingredients to the
proposed approach isolated from each other. First, we consider
the impact of the choice of the elementary distance function
measured by classification accuracy. Then, we discuss the
flexibility of the approach by using the datasets of specific
movement pattern, with respect to the choice of the parameter
k. Finally, we discuss the impact of the segmentation approach
on the classification accuracy. In summary, we showed, that the
proposed architecture is flexible, and works as expected.

A. Impact of the Distance Measure

The comparision of the final classification performance
of the proposed approach provides with the insight that the
Fréchet distance best covers the characteristics of Wi-Fi
trajectories in our datasets. While the DTW distance provides
very good results for short fragments of the query trajectory, it
is soon outperformed by the Fréchet metric, which is the only
metric which reaches above 90% classification accuracy in the
end. Figure 6 depicts these results.

Movement Pattern Paths Places Trajectories Average Duration APs Average Number of APs
Stairs 6 4 48 10,63 s 13 9,13 (=̂ 70,23 %)
Hallway 8 5 64 27,98 s 43 15,25 (=̂ 35,47 %)
Floor 8 4 40 23,22 s 20 12,75 (=̂ 63,75 %)
Plus 8 5 64 23,21 s 38 14,78 (=̂ 38,89 %)
Square 12 4 64 15,86 s 27 17,56 (=̂ 65,04 %)

TABLE I. CHARACTERISTIC PROPERTIES OF THE DIFFERENT CASES.

0

20

40

60

80

100

0 20 40 60 80 100

DTW
Hausdorff

Fréchet

Trajectory Fraction [%]

Su
cc

es
s

R
at

e
[%

]

Fig. 6. Comparision of different distance functions

0

20

40

60

80

100

0 20 40 60 80 100

Floor
Hallway

Plus
Room

Su
cc

es
s

R
at

e
[%

]

Trajectory Fraction [%]

Fig. 7. Comparision of testcases

B. Classification Results

The choice of testcases for the evaluation and the per-
formance of the propsed approach using the Fréchet metric
in all cases is depicted in Figure 7. We can conclude from
this setting, that movement patterns with high variation of
signal conditions, such as walking a plus pattern at an indoor
crossing or walking a hallway, have better results. This is to
be expected, as the movement introduces dissimilarity. The
approach directly exploits these signal fluctuations, which are
problematic for a coordinate based position determination. In
total, the system si working as expected in all cases.

In order to justify the additional complexity of selecting the
top k-next neighbors in the dataset, we evaluated the result sets

0

20

40

60

80

100

0 20 40 60 80 100

Su
cc

es
s

R
at

e
[%

]
Trajectory Fraction [%]

1
1-2
1-3
1-4
1-5

Fig. 8. Probability of finding the right trajectory in the top k nearest neighbors
for varying k

for varying k. Figure 8 depicts this results.

Furthermore, we have to check that the simplification
using Douglas-Peucker algorithm did not negatively affect
classification performance. Fortunately, this is almost the case.
Figure 9 depicts the performance of the system with and
without Douglas-Peucker simplification.

0

20

40

60

80

100

0 20 40 60 80 100

Su
cc

es
s

R
at

e
[%

]

Trajectory Fraction [%]

Original
Douglas-Peucker

Fig. 9. Negative impact of Douglas-Peucker simplification

Note that the computational overhead as well as the com-
munication cost can be greatly reduced by applying Douglas-
Peucker algorithm and that the marginal negative impact is
neglectible.

C. Segmentation

In order to evaluate the impact of the segmentation scheme,
we evaluated the system for varying k and all six segmentation
schemes of Section IV-D. Figure 10 depicts the success rate
for the varying segmentation schemes.

0

20

40

60

80

100

Su
cc

es
s

R
at

e
[%

]

1 1-2 1-3 1-4 1-5

First Last Maxima Abs. Var Rel. Var Threshold

Fig. 10. Impact of segmentation schemes

The Y-axis measures the rate with which the correct trajec-
tory has been found in the top k trajectories for k = 1 . . . 5. It
can be clearly seen that the maximum segmentation provides
the best results for varying k. However, for larger k the
difference is reduced and can be neglected for k = 5. In
other words: In order to have the correct trajectory among
the top five trajectories, the selection of segmentation scheme
is irrelevant. However, the ordering of the top five trajectories
is very sensitive to the choice of segmentation schemes.

VII. CONCLUSION

With this paper, we have provided a multilevel architec-
ture for indoor trajectory processing using Wi-Fi signals as
information source. We showed that it is possible to use
Wi-Fi signals directly to infer the trajectory out of a given
database of trajectories with high success rates. The results
for the different test cases give a deep understanding of
why signal anomalies, which are problematic for coordinate-
based positioning, are useful for trajectory identification. This
amounts to cases, where the signal quality quickly changes
while traversing corners or staircases. One surprising result
is that trajectory distance calculation based on dynamic time
warping performs worse than classical monotonous distance
processing given by Fréchet distance. Further, we conducted
experiments with different ways of segmenting trajectories in
an unsupervised manner only from sensor data. The results
are promising and lead to smaller elementary trajectories and
automatically allow for the detection of common subsequences
of this type in different trajectories. Altogether, we have shown
that it is possible to provide trajectory matching services
using sensor data from mobile devices and that a top k
candidate approach leads to very good results. The domains of
possible application range from target guessing over proactive
navigation to context-aware networking.

REFERENCES

[1] S. Scellato, M. Musolesi, C. Mascolo, V. Latora, and A. T. Campbell,
“Nextplace: a spatio-temporal prediction framework for pervasive sys-
tems,” in Pervasive Computing. Springer, 2011, pp. 152–169.

[2] J. A. Álvarez, J. A. Ortega, L. G. Abril, F. Velasco, and F. J. Cuberos, “¿
where do we go? ontheway: A prediction system for spatial locations.”
in ICUC, 2006.

[3] J. Froehlich and J. Krumm, “Route prediction from trip observations,”
SAE SP, vol. 2193, p. 53, 2008.

[4] T. M. T. Do and D. Gatica-Perez, “Where and what: Using smartphones
to predict next locations and applications in daily life.” in Pervasive and
Mobile Computing, 2013.

[5] A. Noulas, S. Scellato, N. Lathia, and C. Mascolo, “Mining user
mobility features for next place prediction in location-based services,”
in Data Mining (ICDM), 2012 IEEE 12th International Conference on.
IEEE, 2012, pp. 1038–1043.

[6] J. Krumm and A. B. Brush, “Learning time-based presence probabili-
ties,” in Pervasive Computing. Springer, 2011, pp. 79–96.

[7] J. Wang and B. Prabhala, “Periodicity based next place prediction,” in
Nokia Mobile Data Challenge 2012 Workshop. p. Dedicated task, vol. 2,
no. 2, 2012.

[8] L.-H. Tran, M. Catasta, L. K. McDowell, and K. Aberer, “Next place
prediction using mobile data,” 2012.

[9] Z. Lu, Y. Zhu, V. W. Zheng, and Q. Yang, “Next place prediction by
learning with multiple models.”

[10] J. Petzold, F. Bagci, W. Trumler, and T. Ungerer, “Comparison of
different methods for next location prediction,” in Euro-Par 2006
Parallel Processing. Springer, 2006, pp. 909–918.

[11] D. Katsaros and Y. Manolopoulos, “Prediction in wireless networks by
markov chains,” Wireless Communications, IEEE, vol. 16, no. 2, pp.
56–64, 2009.

[12] L. Song, D. Kotz, R. Jain, and X. He, “Evaluating location predictors
with extensive wi-fi mobility data,” in INFOCOM 2004. Twenty-third
AnnualJoint Conference of the IEEE Computer and Communications
Societies, vol. 2. IEEE, 2004, pp. 1414–1424.

[13] S. Gambs, M.-O. Killijian, and M. N. del Prado Cortez, “Next place
prediction using mobility markov chains,” in Proceedings of the First
Workshop on Measurement, Privacy, and Mobility. ACM, 2012, p. 3.

[14] H. Alt and M. Godau, “Computing the fréchet distance between two
polygonal curves,” International Journal of Computational Geometry
and Applications, vol. 5, no. 1, pp. 75–91, 1995.

[15] T. Eiter and H. Mannila, “Computing discrete fréchet distance,” 1994.
[16] D. J. Berndt and J. Clifford, “Using dynamic time warping to find

patterns in time series.” in KDD workshop, vol. 10, no. 16. Seattle,
WA, 1994, pp. 359–370.

[17] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature,”
Cartographica: The International Journal for Geographic Information
and Geovisualization, vol. 10, no. 2, pp. 112–122, 1973.

[18] Y. Zheng and X. Zhou, Computing with Spatial Trajectories. Springer,
2011, vol. 308.

