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ABSTRACT

Computer vision has seen some breakthroughs in the last
decade based on some methodological advances, but as well
based on the availability of huge datasets like ImageNet for
training. However, training data is generally scarce in remote
sensing and even more in high-resolution or high-quality
remote sensing of sensitive areas. Some efforts have been
made to provide labeled public domain data, but aside low-
resolution data, these activities are not sufficient yet. In this
paper, we propose an alternative approach: we transform
satellite images into a representation in which features learnt
from Internet photography are more meaningful. We show
how learnt colorspace transformations can enable signifi-
cantly more stable transfer learning from ImageNet. As a
consequence, small training datasets suffice allowing for sig-
nificantly more diverse Earth observation applications. We
present experiments on high-resolution remote sensing im-
ages of airplanes as featured in the 2020 Gaofen Challenge
on Automated High-Resolution Earth Observation Image
Interpretation.

Index Terms— Transfer Learning, Land Cover, Object
Detection, Learning Theory

1. INTRODUCTION

Image analysis has seen a revolution in the last decades due
to the invention and adoption of neural networks including
Convolutional Neural Networks (CNNs) and Generative Ad-
versarial Networks (GANs). Both techniques provide high-
quality end-to-end learning if the amount of training data is
sufficient to represent the underlying data distribution.

For CNNS, the traditional benchmark application is clas-
sification on the ImageNet datasets as part of the ILSVRC
[1]. The ILSVRC object detection track since 2012, for exam-
ple, is based on a dataset of 1.2 million hand-labeled training
images containing objects from 1,000 semantic categories,
where images do not overlap multiple categories.

The most similar collection in remote sensing is, maybe,
BigEarthNet land cover classification for Sentinel 2 multi-
spectral satellite image patches. But this dataset provides less

than 60.000 images of the Earth surface [2] and the semantic
categories of land cover in these images are overlapping. Fur-
thermore, spatial autocorrelation adds additional structures
complicating the problem, hence the problem is by an order
of magnitude harder than the ImageNet challenge referenced
above. In addition, the visual dynamics of Earth surface struc-
tures is much higher as opposed to the 1,000 categories of
objects in the ImageNet challenge. Additional datasets do ex-
ist, but none of them is outstandingly better suited to training
deep neural networks than this BigEarthNet dataset.

More generally, one can conclude that the ingredients of
the computer vision revolution are not given for remote sens-
ing data: first, the number of available training images is ex-
tremely small in comparison to the dynamics and complexity
of the intended classification and segmentation results and,
second, the algorithmic improvements are difficult to unlock
as the current tooling of the deep learning community does
not allow for efficient consumption of spatial imagery. In-
stead, most researchers actually generate datasets that fit the
tooling of the computer vision domain.

A good overview of how and to which extent deep learn-
ing has been successfully adopted in remote sensing is given
in [3] which also contains links to some useful datasets. A
more general perspective on Earth observation information
fusion is given in [4].

In general, there are two options to deal with the situation
that the complexity of remote sensing images is higher while
the amount of training data is lower and that label noise and
ambiguities create even more difficult settings for learners:
(1) reduce the complexity of the models (e.g., number of lay-
ers, number of weights) and (2) transfer learning from large
datasets available in other domains.

For the approach (1), reducing the complexity of models,
we remark that in many cases traditional data mining method-
ology including decision trees, random forests, linear models,
and support vector machines outperform their deep learning
counterpart as soon as the region of interest becomes large or
even global. For example, the global surface water map has
been generated using only traditional visual analytics and data
mining techniques relying on the efficient ability to embed ex-



pert knowledge into these processing chains [5]. More con-
cretely, convex hulls of points in colorspace have been used
to demark regions of interest in the inference engine.

With this paper, we contribute to the second stream of
work, namely transferring knowledge from huge data collec-
tions to the domain of remote sensing but taking inspiration
from the colorspace convex hulls used for surface water clas-
sification at the same time reducing model complexity by only
training a very small decision network and not adapting pre-
trained features.

2. METHODOLOGY

This chapter first introduces the intuition before formalizing
the core technique called archetypal projection.

2.1. Intuition

We assume that we are given a small set of satellite images
already represented as a true color or false color composite
in a three-dimensional colorspace (RGB). Many sensors mea-
sure these spectral channels directly, but in some applications,
different channel combinations or even complex functions of
the input channels are used to generate visually appealing yet
informative RGB composites. The general approach is now
to fine-tune a CNN trained on ImageNet or other large-scale
computer vision datasets using these images. But as the us-
age of the colorspace is drastically different between remote
sensing imagery and Internet images, we need to introduce a
colorspace transformation for allowing a good adoption of the
pretrained features. For example, satellite images of airplanes
over concrete are rather gray-in-gray with maybe some green
and yellow depending on the season and location of the im-
ages. Thus, the images are very similar with each other and
use only a small part of the spectrum. As it is known that
CNNs for ImageNet are sensitive to colors, this is not a good
prerequisite. Therefore, directly fine-tuning the CNN will be
ineffective as we confirm in the experiments.

The basic proposed methodology for the colorspace trans-
formation is inspired from archetypal analysis in which con-
vex combinations of data items are used to extract extreme
points such that all data points can be well represented as con-
vex combinations of these archetypes. The reason for this is
that such methods can zoom in partial colorspaces easily, are
computationally efficient, and mimic the feature-space con-
vex hulls used for surface water classification [5].

2.2. Formalization

First, we define a color archetype and the archetypal projec-
tion.

Definition 1. Given an n-dimensional colorspace (e.g., n fre-
quency bands), a color archetype of dimension n is an or-
dered tuple of n floating point values.
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Fig. 1. Archetypal Positions learned using Genetic Algo-
rithm. Color depicts accuracy of the model that used this
archetype for the archetypal projection.

Definition 2. Given a set of k color archetypes of dimen-
sion m and an image from an n-dimensional colorspace, the
archetypal projection maps each pixel of the input image to a
tuple of distances to the archetypes. If not specified otherwise,
we use the Euclidean distance and normalize each archetype
locally in the image by stretching obtained distance values to
the range [0, 255] N Ny

We will now try to find a good set of archetypes such that
the archetypal projection leads to a better training character-
istics for pretrained deep neural networks. Archetypal anal-
ysis is based on a framework first introduced by Cutler and
Breiman [6] as a non-linear least squares problem. In a nut-
shell, it is based on finding artificial data points (archetypes)
which are convex combinations of real data items and vice
versa each data item is well-represented as a convex combina-
tion of the archetypes. Such archetypes approximate a convex
hull.

We find such archetypes for seeding a genetic algorithm
by solving the archetypal equation using an iterative algo-
rithm. These archetypes, together with some random points
and the original RGB dataset provide an initial population for
a genetic algorithm. Each individuum in this population (ex-
cept for the one representing the original RGB dataset) is rep-
resented by three archetypes giving rise to a three-channel im-
age by means of archetypal projection. This dataset is used to
train a deep neural network based on VGG-16 with weights
learned on ImageNet. In this process, only the weights of the
last two layers are retrained and the second-last layer is kept
pretty small (32 neurons). Each of these individuals is trained
for 15 epochs on 50% of the Gaofen dataset (taking care that
train, test, and validation data are non-overlapping).

The validation set is used to estimate the model perfor-
mance and gives the fitness value to the individual. After
training, a genetic algorithm selects two instances out of the
population with a probability related to this fitness of the in-
dividual using the roulette-wheel technique. These parents
are used to form new convex combinations. In this work, we
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Fig. 2. Temporal Evolution of Genetic Algorithm Searching for Good Colorspace Archetypes.

choose two parents a; and a; and a random value 0 < o < 1.
We use a normal distribution with zero mean and a standard
deviation of o to shoot off the offspring into a random di-
rection away from the line between both archetypes to retain
more exploration.

0j = aap + (1 —a)a; +N(0,0)

This offspring is then added to the population. Each round of
the genetic algorithm, low fitness instances are removed and
a few fully random instances are added. We iterate this ge-
netic algorithm for eight hours on a single GPU and fine-tune
a VGG16 convolutoinal neural network pretrained on Ima-
geNet. As the classification layers, we add a dense layer with
32 entries and rectified linear unit (ReLU) activations and ap-
ply dropout with 0.5 before a final layer with two neurons and
Softmax activation.

3. EXPERIMENTS AND RESULTS

Genetic algorithms are very good at optimizing functions in
difficult situation. In contrast to gradient-based methods, they
are able to track multiple local minima at the same time. The
proposed model bagging is based on such diversity, namely, it
is needed for bagging to lead to improvements that the mod-
els are non-correlated. Furthermore, it is unclear whether the
intuition of a convex recombination of individuals is able to
realize a good exploration-exploitation tradeoff: does it ac-
tually use the knowledge encoded in one generation of the
genetic algorithm to find better instances? And does it still
allow for sufficient flexibility (together with mutation) to ex-
plore new areas of the feature space? We explore these open
questions in a series of experiments.

Baseline Performance. But before looking into this ap-
proach, we should fix a baseline which is a model without
colorspace transformations applied. As mentioned before the
experiment uses a dataset consists of high-resolution remote
sensing images of airplanes as featured in the 2020 Gaofen
Challenge on Automated High-Resolution Earth Observation
Image Interpretation. This model is surprisingly powerful
and outperforms random archetypal projections. Its accuracy
sums up to 94% following the given training protocol.

Stability of Diversity. The second aspect we need to ana-
lyze is whether the archetypes collapse over time. Very often,
it is the case that meta-learning algorithms like boosting or
bagging collapse as all models tend to become the same opti-
mal model rendering the combination of these models not ad-
vantageous. Fortunately, this is not the case. The archetypal
projection has many local optima and the genetic algorithm
can successfully exploit multiple of them at the same time.
Figure 1 depicts the population of the genetic algorithm after
optimizing. More concretely, it depicts all archetype positions
together with the accuracy of the model this archetype was
part of. While this visualization does not show dependencies
between the archetypes in a certain individuum, the fact that
many high-quality models use different areas of the feature
space is a hint to that a single RGB model cannot capture the
same amount of information when pre-trained on ImageNet
due to the difference of color distributions between Earth ob-
servation imagery and photographic images. Furthermore, as
the models consume different parts of the feature space, they
have a chance of being not too correlated in terms of their
predictions such that we can still expect bagging to be advan-
tageous.

Genetic Knowledge Exploitation. The question whether
the model combination mechanism embedded in the ge-
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Fig. 3. Performance of Randomly Bagging Surviving Indi-
vidual Models

netic algorithm based on the perturbed linear interpolation
of archetypes is able to preserve good model information is
answered by analyzing the evolutionary process. We trained
models on a single GPU for eight hours and depict the life-
time of each model as part of the genetic algorithm population
in Figure 2. Note that the figure is ordered by fitness, which
is given as the model accuracy on the validation dataset. One
can clearly see that models get better significantly over time
and that good models have a long lifetime while randomly
generated bad models are quickly removed from the popula-
tion. It is worth noting that this optimization on a single GPU
was able to boost accuracy from 94% for the RGB case to up
to 98% for single models. Also note that the computational
overhead at inference time is neglectible as the archetypal
projections are easy to evaluate.

Model Bagging Performance. Figure 3 depicts the perfor-
mance of all possible bags of models with one to five mem-
bers. The aggregation is performed by taking the mean of the
Softmax layer output. One clearly sees two trends: the vari-
ance is reduced when increasing the number of models and
the mean value is increasing. Given that the original RGB
model reached only 94%, we see a significant total perfor-
mance boost with ensembles of five models reaching more
than 97.5% on average.

This finally proofs that ensembles of different classifiers
based on the exact same feature extraction applied to a family
of color-adjusted version of the input data provide sufficient
diversity and non-correlation for successful model bagging.

4. CONCLUSION

With this paper, we have shown that transfer learning from
ImageNet-based computer vision to Earth observation im-
agery can gain performance from non-trivial colorspace
transformations based on replacing color channels with the
distance to anchor points in colorspace called archetypes. In

addition to the boost in performance, it is worth noting that
this is as well a general technique allowing to map multispec-
tral or hyperspectral observations into an RGB colorspace for
processing with computer vision models as the number of
channels of the output is the number of archetypes and, thus,
independent from the number of input channels.

For future work, we are going to work on even more dras-
tic source transformations including forgetful functions which
— based on data mining techniques and intrinsic statistics — re-
move selected regions of the colorspace. And in line with this,
we envision to combine this framework as a flexible prepara-
tion for aggressive deep learning model pruning even down to
the scale of upcoming radiation-hard FPGAs to bring deep-
learning image analysis into the next generation of Earth ob-
servation satellites for onboard decisions in space. Further-
more, it remains an open problem how to calibrate the training
procedure towards comparable softmax scores for even better
model bagging.
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