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ABSTRACT:

The COVID-19 pandemic has impacted the economic growth of almost every country, with many industries facing operational
difficulties, and the failures of a large number of restaurants, in particular, have extensively tested the resilience of urban economies.
The gastronomy business is one of the most decentralized and location-based consumer business in urban, which is highly related
to the economic attributes of cities. However, there are few studies on quantitative analysis of urban economic resilience through
the opening and closing of restaurants. Understanding and planning for the aftermath of the COVID-19 may not only minimize
detrimental effects but also provide insights into the economic recovery policies. This study analyzes the phenomenon of restaurant
failures after the pandemic in Shenzhen, China via percolation in multilayer complex networks. We identify the closed restaurants
through data mining, and construct the human mobility network through mobile phone location data, aggregating origin and destin-
ation points into grids. We then embedded the restaurants’ Points of Interest (POIs) into the grids, creating an additional restaurant
network layer. By considering spatial interactions between restaurants, we constructed a geographical proximity network for res-
taurants in each grid. Finally, Using these multilayered nested networks, we analyzed the pandemic’s impact and the occurrence of
critical phenomena related to restaurant closures under lockdown policies through percolation in multilayer complex networks. As
a result, this study found that the severity of the pandemic significantly increased the probability of restaurant failures, with cascade
and critical phenomena. However, implementing precise lockdown measures can effectively lower the probability of restaurant
closures. These results highlight the effectiveness of accurate lockdown policies in striking a balance between epidemic prevention
and economic development, contingent upon the correct identification of high-risk areas. This finding suggests that policy makers
and public health departments need to balance policy effectiveness with interventions in economic activities in order to increase the
resilience of urban economies during the pandemic.

1. INTRODUCTION

The COVID-19 pandemic, which began in late 2019, has pro-
foundly shocked various sectors of society, most notably urban
economies, leading to the deepest global recession since the
Great Depression (Bank, 2020, Guerriero et al., 2020). Non-
pharmaceutical (NPI) interventions such as government-mandated
lockdowns and stay-at-home policies have significantly curtailed
human mobility (Schlosser et al., 2020, Lai et al., 2020). Con-
currently, public fear and anxiety surrounding the virus (Gools-
bee and Syverson, 2021, Palacios et al., 2022) led to a self-
imposed reduction in travel frequency (Wang and Noland, 2021),
which further decreased visits to social venues such as restaur-
ants, shopping centers, and entertainment sites (Chang et al.,
2021). This shift posed significant challenges to urban eco-
nomies (Spelta and Pagnottoni, 2021, Wang et al., 2022), par-
ticularly industries dependent on in-person interactions. For in-
stance, the gastronomy business, predominantly restaurants and
catering services, has experienced unprecedented impacts (Fe-
lix et al., 2020, Gursoy and Chi, 2020). By August 1, 2022,
the annual growth rate of global restaurant patrons sat at a mere
0.81% (Lock, 2020), reflecting the enduring and profound influ-
ence of COVID-19 on the global restaurant industry. This situ-
ation underscores not only the overall economic consequences
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of the pandemic, but also the urgent need to address economic
resilience and develop strategies for urban planning and eco-
nomic recovery (Bartik et al., 2020, Palacios et al., 2022, Wang
et al., 2022).

Numerous studies have employed high-resolution mobility data
to probe the effects of the COVID-19 pandemic and corres-
ponding intervention strategies on urban mobility (Lutu et al.,
2020, Schlosser et al., 2020, Deng et al., 2021, Chang et al.,
2021). However, research scrutinizing the ramifications on urban
economies from a microscopic perspective of population move-
ment during the COVID-19 pandemic remains limited (Spelta
and Pagnottoni, 2021, Long and Ren, 2022). Critically, only
a handful of studies explore the resilience of urban economies
in the face of pandemic shocks and the effectiveness of inter-
vention policies (Bartik et al., 2020, Wang et al., 2022, Ma et
al., 2023). The concept of urban resilience pertains to a city’s
ability to recover and adapt when confronting adversity, encom-
passing economic, social, cultural, and infrastructural dimen-
sions (Evans, 2011, Hernantes et al., 2019, Shi et al., 2021).
With urban resilience taking on escalating significance in policy
dialogues, it’s crucial to devise quantitative metrics to enhance
our comprehension and promotion of this concept (Bruneau et
al., 2003, Zhao et al., 2015). Such tools and metrics can guide
policy decisions during crises, boosting a city’s ability to with-
stand shocks and adapt and evolve post-crisis.
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As a highly decentralized, location-specific sector of urban com-
merce, the gastronomy business is pivotal in urban econom-
ies (Glaeser et al., 2017, Dong et al., 2019). Preceding stud-
ies have unveiled that restaurants can foresee various socioeco-
nomic attributes within urban communities with remarkable ac-
curacy, fluctuating between 90%-95% (Dong et al., 2019). Con-
sequently, we propose that the success or downfall of restaur-
ants can act as a metric for urban economic health and resili-
ence during crises, notably, the COVID-19 pandemic. Study-
ing restaurant closures throughout this global health emergency
can furnish critical insights into urban economic durability, thus
guiding recovery initiatives. However, such analyses are few,
underscoring a pronounced knowledge void in interpreting and
tackling urban economic resilience amidst pandemics.

Our research endeavors to fill this gap by examining the clos-
ures of restaurants in Shenzhen, a vibrant urban hub in China,
following the COVID-19 outbreak and devising a multilayer
complex network percolation method for simulation. This ap-
proach aims to quantify the pandemic’s destructive toll on the
urban economy and gauge the efficacy of governmental pre-
ventative measures. The gastronomy business, a vital cog in
Shenzhen’s economic machinery, was profoundly impacted by
the pandemic’s onslaught in early 2020. Our data discloses a
record-high closure rate (Death Ratio) for restaurants in 2020,
accompanied by the lowest survival rate (Remaining Ratio) in
recorded history (Fig. 1. A).

Cities epitomize complex adaptive systems, capably modeling
the interconnected non-linear interactions among various sub-
systems such as human mobility network, virus transmission
network, and economic interaction network through the lens
of multilayer networks (Aleta et al., 2017, Alves et al., 2019,
Chang et al., 2021). Concurrently, the percolation theory in
multilayer networks offers a robust framework for appraising
the resilience of this complex system (Liu et al., 2018, Li et al.,
2021). Therefore, percolation theory have been utilized in re-
silience assessment across a diverse range of complex systems,
from power grids to transportation networks (Gao et al., 2016,
Ambühl et al., 2023).

We aggregated three months of mobile phone location data into
a mobility network, representing potential transmission paths
for the virus among the population. The origin and destination
points of the mobility network are a Geohash6 ( 1.2KM*0.6KM)
grid. Simultaneously, we embed restaurants Points of Interest
(POIs) into these grids, constituting a corresponding additional
layer of the network (Fig. 1.C). Each grid can be regarded as
a community, and thus we construct a geographical proximity
network (Delaunay graph) of the restaurants within the com-
munities as we observe the clustering nature of restaurant clos-
ures (Fig. 1.B). This network captures the spatial correlation
between the states of different restaurants well. By simulating
percolation in multilayer networks, we aim to identify critical
phenomena that influence restaurants’ survival and recovery ca-
pacity. We hope our research method can serve as a valuable
tool for stakeholders to assess urban economic resilience in the
backdrop of a pandemic. The findings could help policymakers
understand the interplay between policy effectiveness and eco-
nomic activity. Especially in pandemic control, balancing the
effects of policies with economic activity interventions can en-
hance the elasticity of urban economies (Ash et al., 2022).

Figure 1. Resilience assessment of urban restaurants based on
multilayer networks. A, the status of restaurant POIs is assessed
according to their locations over the years. The status in a given
year is compared to the preceding year’s. If a restaurant is found
in the same location, it is classified as ’remaining’. A restaurant

that appears in a new location is marked as ’birth’, whereas a
restaurant no longer present is considered to have gone out of

business, referred to as ’death’. For further details on the
methodology, please refer to (Wu et al., 2021). B, spatial

visualization of the state of restaurants in 2020, with closed
restaurants showing spatial clustering. C, Sample visualization

of a multilayer network of restaurants and human mobility
(10,000 edges), where each node of the network is a Geohash6

( 1.2KM*0.6KM) grid, and geographic proximity networks
(Delaunay graph) are constructed inside each grid, and in the
lower-right corner is a visualization of a network of restaurant

proximity inside a grid, so that this is in fact a three-layer
network. D, data processing flow.

2. MATERIALS AND METHODS

In this study, we apply percolation theory to analyze the impact
of the COVID-19 pandemic on the local restaurants in Shen-
zhen. Percolation theory studies the connectivity and stability
of complex networks, which can predict the phase transition
phenomenon that occurs when the network is disturbed (Wang
et al., 2019). Specifically, when the disturbance reaches a crit-
ical value, the network will suddenly break or malfunction. We
regard the urban system as a complex network consisting of
multiple subnetworks with interactions between them. Accord-
ingly, we design two subnetworks: a virus transmission net-
work based on human mobility and an economic activity net-
work with restaurants as nodes. We simulate the transmission
process of COVID-19 on the network and the impact of gov-
ernment lockdown measures on restaurants. To evaluate the
robustness of the network, we use percolation theory to make
some restaurant nodes malfunction and calculate the proportion
of the largest connected component on the network. This pro-
portion can reflect the ability of the urban system to maintain
regular operation during the pandemic or the urban system’s
ability to resist the pandemic’s damage (Cao et al., 2020, Duc-
cio Piovani1, 2020).

2.1 Data Source

We collected mobile location data for residents of Shenzhen
from mobile location data service providers, covering the
period from September 1 to December 31, 2019. Using the
location report data sorted by the time series throughout the



day, we constructed user travel chains. By combining this with
foundational information such as WIFI, we identified the stop-
over points during travel. The origin (O) and destination (D)
of each trip were determined based on the time at each stop-
over point. Lastly, through data mining, we constructed a hu-
man mobility network using these OD points, which represents
a relatively consistent daily travel pattern of urban residents in
Shenzhen. The annual Points of Interest (POI) data for restaur-
ants in Shenzhen from 2015 to 2022 were collected from the
Gaode Map platform (https://lbs.amap.com/) at the end of each
year.

For the initial values of the model, we will use empirical data
on restaurant survival, death, and birth on specific geographical
grids in the restaurant network and infection control zone data
on specific geographical grids in the mobility network. Spe-
cifically, we will first divide Shenzhen city into 2609 grids, then
aggregate the POI of each restaurant into the grid areas we di-
vided, thus obtaining the number of restaurant survival, death,
and birth in each grid.

2.2 Network and Node Status Settings

Firstly, we assume that all network edges are undirected. In
the mobility network, the nodes are individuals’ residences and
workplaces (represented by geographical grids), and there will
be edges between these locations. The edge weight is the av-
erage population flow between these locations. We use Yjh to
represent the mobility network.

Further, we use the Delaunay graph to construct the geographic
proximity network and then use the virus infection data cal-
culated on the mobile network, which represents which geo-
graphic grid region will be closed(Sun et al., 2010). We can
simulate the survival status of specific restaurant nodes on the
Restaurant-r network.

Each node can be functional at any moment (xi = 1, yj = 1)
or non-functional (xi = 0, yj = 0). A non-functional node
can cause secondary damage by isolating its neighbours from
the rest of the network or via cascading mechanisms. Though a
single node or link failure can render other parts of the network
non-functional, once the initial failure is repaired, the secondary
failures will typically return to functionality. For example, the
failure of a node on the mobility network represents confirmed
cases in the area that will be sealed off. For the restaurant net-
work of the coupled network, the seal-off will lead to the loss
of its resources, reduce its recovery rate, and increase its death
rate.

Because of a coupling relationship between the two networks,
there will be edges between nodes in different networks, form-
ing a third matrix, generally located on the non-diagonal of the
super adjacency matrix. We use Zi,j to represent it, where i is
a node in the restaurant network, and j is a node in the mobility
network. The specific method is as follows: firstly, we calculate
the centroid of each grid on the mobile network, then arrange
and combine the centroids on mobile network with restaurant
node. And then we calculate the distance between the them.
We add edges between nodes within a certain distance. That
is, if di,j < κ, then Zi,j = 1, otherwise it is 0. We assume
κ = 5km.

2.3 Percolation Process of the Early Pandemic

For the mobility network, a node’s failure is due to a pandemic
infection in the area, so it needs to be sealed off. I want to

use a percolation model on the mobile network to simulate the
virus transmission process. It is assumed that each node on the
mobility network Y has two states, one is infected, and the other
is recovered (still susceptible to infection). For the method of
updating node status, I choose the bond percolation method.

As mentioned earlier, the edge weight between nodes in the
mobility network is the population flow. Firstly, we normalize
these edge weights. We first construct the commute probability
matrix phj by normalizing the outgoing flows for each source
district j, with has the destination. Both h and j are located on
the mobility network Y .

phj =
Fhj

ΣjFhj
(1)

where Σjphj = 1

For an already infected node u, for each neighbour node v, there
will be a pair u, v, and we randomly sample each pair edge ac-
cording to the commute probability pu,v . Then select nodes v
with sample results > 0, and we update their status to be infec-
ted. Moreover, already infected nodes have a certain probability
γ to recover. If it is a non-infected node u, it will come into con-
tact with surrounding nodes. If it contacts susceptible nodes, it
will be infected.

Summarized as the following algorithm: At each time step t
(from t = 0 to t = T), we repeat:

For each node j in network Y :

1. If yj is 0, node j can recover with probability γ;every edge
connecting node j with its neighbour nodes will get a ran-
dom number sampled from the commute probability dis-
tribution; if the number > 0, that neighbour node can also
be non-functional. A random number determines the order
of these two processes

2. If yj is 1, node j will contact each infected neighbour node
and will get infected.

2.4 Percolation Process of the Precision Control Stage

Compared with the rapid spread of the virus with population
mobility in the early stage, precise control will isolate some
areas according to the real-time outbreak situation of the virus,
cutting off the transmission route of the virus from the source.
The specific algorithm is as follows:

At each time step t (from t = 0 to t = T), we repeat:

1. Identify the infected nodes in the network, extract a pro-
portion ζ of the infected nodes into the quarantine set for
isolation and control

2. Update Yjh and Phj matrices

3. For each node j in mobility network, if yj is 0:

(a) If node j is in quarantine set, node j can recover with
probability γ



(b) If node j is not in quarantine set, for every edge con-
necting node j with its neighbour nodes, it will get a
random number sampled from the commute probab-
ility distribution. If the number ¿ 0, that neighbour
node can also be non-functional. Besides, it can also
recover.

4. If yj is 1, node j will contact each infected neighbour node
and get infected.

2.5 Percolation Process of the Restaurant Network

We know that the operation of restaurants requires a sufficient
number of customers, and the pandemic will directly lead to a
decrease in customers. In addition, it will also lead to a sharp
decline in social and economic activities in an area, thereby af-
fecting the survival of restaurants. Therefore, the percolation
process of restaurant survival and death needs to consider the
state of the nodes in the connected mobility network. To model
the observed dependency, we allow the repair rate ηr

x,i of the
primary network X (restaurant network) at node i to depend
on the state of the support network Y (mobility network) at the
exact location obtaining(Danziger and Barabási, 2022).

ηr
x,i = ϕ (⟨y⟩i)

= ϕ(1)− ϕ′(1) (1− ⟨y⟩i) + o
(
(1− ⟨y⟩i)2

) (2)

Where ϕ(x) is a function that represents the functional depend-
ence of the repair rate of the system X on the state of network
Y around site i, which we assess with the network average

⟨y⟩i =
1

k + 1

∑
j

Yijyj (3)

To capture that repair resources are drawn from the neighbour-
hood of the failure and are affected by the networks which sup-
ply them. Here, Yi,j represents the adjacency matrix on the
mobility network. Using it, we can count the failure situation
around the nodes in the mobility network connected to a specific
restaurant node, thereby measuring the number of resources the
restaurant node can obtain. yj(t) represents the state of node j
on the mobility network, with a value of 1 being functional and
a value of 0 being non-functional. k represents the number of
mobile nodes connected to the restaurant node i.

Thus ⟨y⟩i may represent the dynamically evolving customer
accessibility. In 3, the variable ⟨y⟩i captures the temporally
evolving local state of network Y , which may itself co-evolve
with the state of the nodes in network X if dependencies exist
between the two systems. Denoting with ηr,0

x = ϕ(1) the elastic
repair rate and with α = ϕ′(1)

ϕ(1)
, we obtain

ηr
x,i = ηr,0

x (1− α (1− ⟨y⟩i)) (4)

enabling us to describe the expected behavior of ϕ(x) to
first order with the assumption that α ∈ (0, 1). Specific-
ally, we assume that damage in Y will not improve repair in
X (ϕ′(1) ≥ 0 → α ≥ 0)and that the repair rate must remain
positive (|ϕ′(1)| ≤ |ϕ(1)| → α ≤ 1).

Therefore, each of our restaurant nodes i has a recovery rate,
ηr
x,i(t), which means that node i has a probability of surviving

according to ηr
x,i(t) in the percolation process. For the percol-

ation damage of restaurant nodes, we set a fixed damage rate
ηd
x for being damaged. Each restaurant node i is likely to be

damaged according to ηd
x. We use Ri to represent the number

of surviving restaurants in node i, Di to represent the number
of dead restaurants in node i.

Ṙi = −ηd
xRi + ηr

x,iDi +Bi

Ḋi = ηd
xRi − ηb

x,iDi

(5)

We traverse all the restaurant nodes at each time step and update
the number of surviving, dead restaurants. From the above dif-
ferential equations, we can see that the parameters ηd

x and ηr
x,i

have a significant impact on the survival status of restaurants,
and the parameters ηd

x and ηr
x,i will change with the severity of

virus transmission. Moreover, different stages of the pandemic
will affect the rate of virus transmission, ultimately profoundly
impacting restaurants’ survival status.

2.6 Percolation Process of the Restaurant-Inner Network

First, we use the Delaunay graph to construct the proximity
network within each restaurant grid and then use the virus in-
fection data calculated on the mobile network, which repres-
ents which geographic grid region will be closed(Sun et al.,
2010). At the same time, we have calculated the Ri, Di and
Bi data on each restaurant grid, which indicates the probabil-
ity of death, survival and regeneration of restaurants in grid i.
We can simulate the survival status of specific restaurant nodes
on the Restaurant-Inner network. The specific algorithm is as
follows:

At each time step t (from t = 0 to t = 100), we repeat:

1. Update the elements in the regional state Xadj new based
on the value of ystates[t], indicating the lockdown status of
each region.

2. Normalize each row in Xadj new, and obtain the population
flow matrix pxhj .

3. Normalize each row in xstates[t], and derive the death rate
and birth rate of each region node.

4. Iterate over each region:

(a) If the region is locked down, eliminate all nodes
and edges of the region from new network, and ap-
pend all nodes of the region to the death dictionary
dead nodes.

(b) If the region is not locked down, randomly eliminate
or add nodes according to the death rate and birth
rate of the region, and update new network.

(c) If the next time point exists, and the region is not
locked down at the next time point, recover the
dead nodes of the region from the death dictionary
dead nodes, and update new network.

5. Add new network to the networks list.

6. Compute the number of nodes in the largest connected
subgraph in new network, and designate it as plargest, and
insert it to the p largests list.



3. RESULTS

3.1 Effect of Lockdown on Disease Spreading Process and
Economic Resilience

To measure the impact of the disease on the susceptible popu-
lation, we first focus on the infection rate as a critical metric.
Moreover, for each pandemic scenario, we calculate and record
the following outcomes related to economic resilience: 1) the
Remaining rate, which is the fraction of restaurants that sur-
vive; 2) the Death rate, which is the proportion of restaurants
that go bankrupt; 3) the Birth rate, which is the ratio of new
restaurants that enter the market.

Figure 2 shows that the infection rate in the population de-
creases as the ζ value increases, indicating that targeted con-
trol policies can effectively limit the scale of virus transmis-
sion. This finding agrees with the existing results (Schlosser
et al., 2020), who analyzed Germany’s lockdown policy and
found that containment measures induced significant and last-
ing structural changes in the mobility network. These changes
affected the transmission process of the epidemic by flattening
the infection curve and reducing the likelihood of long-distance
virus spread.

In addition to the infection rate, we examine some variables
that reflect economic resilience. We observe that the remain-
ing rate and birth rate, which represent the economic vitality
of the restaurant industry, increase with the increase of the ζ
value. Conversely, the death rate of restaurants decreases with
the increase of the ζ value. This suggests that when epidemic
prevention policies have a more local and precise impact on
communities and virus transmission sources, service industries
like restaurants that heavily rely on commuting labor in cities
show stronger economic resilience. Some studies have also re-
ported that urban economic resilience was affected in the initial
stages of the outbreak, but timely and precise lockdown mitig-
ated these impacts (Wang et al., 2022).

In addition to the different stages of the pandemic, we also ex-
amine how different values of ζ affect the pandemic process and
economic resilience. As shown in Figure 2, we find similar pat-
terns across different values of ζ. Figure 3 shows the infection
rate of the population and the economic resilience indicators as
functions of ζ. Recall that ζ is the parameter that measures the
fraction of infected nodes isolated on the Y network, which in-
fluences the infection rate of the population. Figure 3A shows
the case where ζ = 0 means no containment measures are in
place. In this scenario, the virus spreads quickly and reaches an
infection rate of nearly 0.8.

As a result, the death rate of restaurants increases as more nodes
on the mobile network become non-functional. Conversely, res-
taurants’ remaining rate and birth rate decrease and the death
rate is much higher than the remaining rate and birth rate. This
indicates a strong coupling relationship between the mobile and
restaurant networks. On the other hand, as ζ increases, the
scale of virus transmission decreases, and the final infection
rate drops to around 0.6 when ζ = 0.8 and γ = 1/9 (Wölfel et
al., 2020, ?). Fig. 3. B, C, and D show that the gap between
the death rate and the remaining rate of restaurants becomes
smaller, which implies that when the epidemic is effectively
controlled, the city’s economic resilience will recover. These
results are in line with the simulations (Danziger and Barabási,
2022). They studied the recovery coupling and found that re-
covery will be slowed if the support networks are not functional.

Figure 2. Lockdown effects on infection wave and economic
resilience. The red line shows the percentage of infected

individuals in the total population, while the green line indicates
the mortality rate of restaurants due to the pandemic. The orange

line reflects the resilience of restaurants that survived the
pandemic shock, and the purple line denotes the emergence of

new restaurants in the market. Other parameters(Table 1):
ηd
X=0.5, ηr,0

X =0.5, ηb,0
X =0.5, α=1, ζ=0.9, R0=6, γ= 1

9

Figure 3. The dynamics of the pandemic and its effects on the
restaurant industry under different ζ. The four figures (A)-(D)

represent the dynamical behavior of the system under different ζ
values: 0, 0.3, 0.6, and 0.8. The ζ value indicates the fraction of
nodes in the Y network that are disconnected from the rest of the
network due to isolation. And eventually affects its stability and

oscillation. Other parameters(Table 1): ηd
X=0.5, ηr,0

X =0.5,
ηb,0
X =0.5, α=1, R0=6, γ= 1

9

3.2 A Further Look at the Critical Transition: Infections
and Economic Resilience

In this study, we investigate how infections and economic resi-
lience evolve under different stages of the pandemic. We use
a day as a cut-off point to separate the early phase of the pan-
demic from the lockdown phase. In the early phase, the govern-



ment did not adopt targeted containment strategies, whereas, in
the lockdown phase, the government enforced strict lockdowns
on areas and workplaces with high infection rates. Fig. 4 shows
the critical transition that occurs around the cut-off point. Ac-
cording to our simulation results, the infection curve flattened
after 20-time steps, corresponding to our cut-off point. As the
infection rate declines, the pandemic’s adverse effects on so-
cial and economic activities are alleviated. This leads to a de-
crease in the restaurant mortality rate and an increase in the
restaurant survival rate and birth rate, as shown in Fig. 4.
Our model’s results are consistent with the existing literature.
For example, some scholars suggest that precise identification
and effective containment of the virus transmission sources can
lower the need for extensive lockdowns and reduce economic
losses (Rahman et al., 2020).

4. CONCLUSION

In this study, we empirically employ percolation theory to ana-
lyze the impact of the COVID-19 pandemic on the local res-
taurants and other socio-economic systems in Shenzhen. Per-
colation theory studies the connectivity and stability of complex
networks, which can predict the phase transition phenomenon
that occurs when the network is disturbed (Wang et al., 2019).
Specifically, when the disturbance reaches a critical value, the
network will suddenly break or malfunction. We regard the
urban system as a complex network consisting of various net-
works that interact with each other. Accordingly, we design two
networks: a virus transmission network based on population
mobility and an economic activity network with restaurants as
nodes. We simulate the transmission process of COVID-19 on
the network and the impact of government lockdown measures
on restaurants. To evaluate the robustness of the network, we
use percolation theory, causing some restaurant nodes to mal-
function and calculate the proportion of the largest connected
component on the network. This proportion can reflect the abil-
ity of the urban system to maintain regular operation during the
pandemic or the urban system’s ability to resist the pandemic’s
damage (Cao et al., 2020).

Fig. 4 shows that in the pre-lockdown stage, both the virus
transmission and the restaurant mortality rates increase signi-
ficantly, while the survival and birth rates decrease rapidly. In
contrast, in the lockdown stage, both the virus transmission
and restaurant mortality rates start to decline, while the restaur-
ant survival and birth rates stabilize and increase. This indic-
ates that the precise lockdown policy can effectively control the
widespread transmission of the virus, which mainly depends on
identifying which areas are high-risk sources of infection(Qiu
et al., 2020).

Moreover, we have also simulated the percolation process of
the restaurant network under the influence of virus transmis-
sion. We have observed a clear phase transition phenomenon
in different stages of the pandemic (see Fig. 5). In the pre-
lockdown stage, the fraction of nodes in the largest connected
component of the restaurant network drops sharply, then fluctu-
ates and rises near the lockdown point, and finally approaches
0.7. This suggests that a small local disturbance may lead to a
large-scale systematic malfunction of the entire restaurant net-
work at a critical point, which reflects the resilience of the urban
system(van de Leemput et al., 2018).

Our study not only provides an efficient method to quantify
urban resilience with multi-source data, but also deepens the

Figure 4. Comparison of the pre-lockdown recover coupling and
the lockdown recover coupling corresponding to days 20. Other
parameters(Table 1): ηd

X=0.5, ηr,0
X =0.5, ηb,0

X =0.5, α=1, ζ=0.9,
R0=6, γ= 1

9

understanding of urban systems and sheds some light on multi-
layer complex network simulation in geographical fields(Sugiki
et al., 2021). Our study also suggested that precise lockdown
policy is an effective way to balance epidemic prevention and
economic development, which depends on accurate identifica-
tion of high-risk regions. Our study can provide some refer-
ences for urban planners and policymakers to cope with future
pandemics or other disasters.

Figure 5. The fraction of nodes in giant connected component
(Plargest) as a function of time.

REFERENCES

Aleta, A., Meloni, S., Moreno, Y., 2017. A Multilayer per-
spective for the analysis of urban transportation systems. Sci-
entific Reports, 7(1), 44359. 10.1038/srep44359. Number: 1
Publisher: Nature Publishing Group.

Alves, L. G. A., Mangioni, G., Cingolani, I., Rodrigues, F. A.,
Panzarasa, P., Moreno, Y., 2019. The nested structural organ-



ization of the worldwide trade multi-layer network. Scientific
Reports, 9(1), 2866. 10.1038/s41598-019-39340-w. Number: 1
Publisher: Nature Publishing Group.

Ambühl, L., Menendez, M., González, M. C., 2023. Under-
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APPENDIX

Parameter variable Meaning and details
ηd
X Destruction rate

ηr,0
X Initial retention rate

ηb,0
X Initial birth rate

α Coupling coefficient between networks
ζ Proportion of isolation
R0 Basic reproduction number
γ Recovery rate
κ Distance threshold

Table 1. Model parameter table


